
Retrocompatibilidade
em desenvolvimento de software



Conceitos e definições

● Retrocompatibilidade: capacidade de um sistema de funcionar corretamente com versões 
anteriores de seus componentes;

● Fallback: comportamento alternativo ou “reserva” para quando uma ou mais funcionalidades 
principais falharem;

● Deploy: mover/enviar o código/versão de um sistema de um ambiente de desenvolvimento para um 
de produção onde os usuários finais podem utilizar;

● Rollback: reverter uma alteração para um estado anterior considerado estável;

● Trigger (em banco de dados): procedimento armazenado no próprio banco de dados que é 
executado quando ocorre um evento;

● EF (Entity Framework): conjunto de bibliotecas para mapeamento de objetos relacionais (ORM);

● Migração/migration: representação das mudanças no código para o banco de dados:
○ objeto/entidade → tabela;
○ propriedade → coluna;
○ etc.



Vantagens e desvantagens

Vantagens:

- “Zero-downtime” deploy;
- Riscos reduzidos no deploy;
- Melhor experiência para o 

usuário;
- etc.

Desvantagens:

- Complexidade aumentada;
- Limpeza de código atrasada;
- Maior demanda de recursos;
- etc.



Backend: exemplo SEM retrocompatibilidade

Aplicação
V1

Banco de 
dados

V1

Pessoa

Nome: string
Idade: int

pessoa

nome: varchar
idade: int4

C# (.NET Core)  PL/pgSQL (PostgreSQL)



Backend: exemplo SEM retrocompatibilidade

Aplicação
V1

Banco de 
dados

V1

Pessoa

Nome: string
Idade: int

pessoa

nome: varchar
idade: int4

C# (.NET Core)  PL/pgSQL (PostgreSQL)

compatível



Backend: exemplo SEM retrocompatibilidade

Aplicação
V2

Banco de 
dados

V1

Pessoa

Nome: string
Idade: int
Sexo: SexoEnum

pessoa

nome: varchar
idade: int4

C# (.NET Core)
 PL/pgSQL (PostgreSQL)



Backend: exemplo SEM retrocompatibilidade

Aplicação
V2

Banco de 
dados

V1

Pessoa

Nome: string
Idade: int
Sexo: SexoEnum

pessoa

nome: varchar
idade: int4

C# (.NET Core)
 PL/pgSQL (PostgreSQL)

migração (EF)



Backend: exemplo SEM retrocompatibilidade

Aplicação
V2

Banco de 
dados

V2

Pessoa

Nome: string
Idade: int
Sexo: SexoEnum

pessoa

nome: varchar
idade: int4
sexo: int4

C# (.NET Core)  PL/pgSQL (PostgreSQL)



Backend: exemplo SEM retrocompatibilidade

Aplicação
V2

Banco de 
dados

V2

Pessoa

Nome: string
Idade: int
Sexo: SexoEnum

pessoa

nome: varchar
idade: int4
sexo: int4

C# (.NET Core)  PL/pgSQL (PostgreSQL)

compatível



Backend: exemplo SEM retrocompatibilidade

Aplicação
V3

Banco de 
dados

V2

Pessoa

Nome: string
Idade: int
Genero: GeneroEnum

pessoa

nome: varchar
idade: int4
sexo: int4

C# (.NET Core)  PL/pgSQL (PostgreSQL)



Backend: exemplo SEM retrocompatibilidade

Aplicação
V3

Banco de 
dados

V2

Pessoa

Nome: string
Idade: int
Genero: GeneroEnum

pessoa

nome: varchar
idade: int4
sexo: int4

C# (.NET Core)  PL/pgSQL (PostgreSQL)

migração (EF)



Backend: exemplo SEM retrocompatibilidade

Aplicação
V3

Banco de 
dados

V3

Pessoa

Nome: string
Idade: int
Genero: GeneroEnum

pessoa

nome: varchar
idade: int4
genero: int4

C# (.NET Core)  PL/pgSQL (PostgreSQL)



Backend: exemplo SEM retrocompatibilidade

Aplicação
V3

Banco de 
dados

V3

Pessoa

Nome: string
Idade: int
Genero: GeneroEnum

pessoa

nome: varchar
idade: int4
genero: int4

C# (.NET Core)  PL/pgSQL (PostgreSQL)

compatível



Backend: exemplo SEM retrocompatibilidade
Banco de 

dados
V3

pessoa

nome: varchar
idade: int4
genero: int4

 PL/pgSQL (PostgreSQL)

Aplicação
V2

Pessoa

Nome: string
Idade: int
Sexo: SexoEnum

C# (.NET Core)

rollback



Backend: exemplo SEM retrocompatibilidade
Banco de 

dados
V3

pessoa

nome: varchar
idade: int4
genero: int4

 PL/pgSQL (PostgreSQL)

incompatível

Aplicação
V2

Pessoa

Nome: string
Idade: int
Sexo: SexoEnum

C# (.NET Core)



Backend: exemplo COM retrocompatibilidade

Aplicação
V1

Banco de 
dados

V1

Pessoa

Nome: string
Idade: int

pessoa

nome: varchar
idade: int4

C# (.NET Core)  PL/pgSQL (PostgreSQL)



Backend: exemplo COM retrocompatibilidade

Aplicação
V1

Banco de 
dados

V1

Pessoa

Nome: string
Idade: int

pessoa

nome: varchar
idade: int4

C# (.NET Core)  PL/pgSQL (PostgreSQL)

compatível



Backend: exemplo COM retrocompatibilidade

Aplicação
V2

Banco de 
dados

V1

Pessoa

Nome: string
Idade: int
Sexo: SexoEnum

pessoa

nome: varchar
idade: int4

C# (.NET Core)
 PL/pgSQL (PostgreSQL)



Backend: exemplo COM retrocompatibilidade

Aplicação
V2

Banco de 
dados

V1

Pessoa

Nome: string
Idade: int
Sexo: SexoEnum

pessoa

nome: varchar
idade: int4

C# (.NET Core)
 PL/pgSQL (PostgreSQL)

migração (EF)



Backend: exemplo COM retrocompatibilidade

Aplicação
V2

Banco de 
dados

V2

Pessoa

Nome: string
Idade: int
Sexo: SexoEnum

pessoa

nome: varchar
idade: int4
sexo: int4

C# (.NET Core)  PL/pgSQL (PostgreSQL)



Backend: exemplo COM retrocompatibilidade

Aplicação
V2

Banco de 
dados

V2

Pessoa

Nome: string
Idade: int
Sexo: SexoEnum

pessoa

nome: varchar
idade: int4
sexo: int4

C# (.NET Core)  PL/pgSQL (PostgreSQL)

compatível



Backend: exemplo COM retrocompatibilidade

Aplicação
V3

Banco de 
dados

V2

Pessoa

Nome: string
Idade: int
Sexo: SexoEnum
Genero: GeneroEnum

pessoa

nome: varchar
idade: int4
sexo: int4

C# (.NET Core)

 PL/pgSQL (PostgreSQL)



Backend: exemplo COM retrocompatibilidade
Banco de 

dados
V2

pessoa

nome: varchar
idade: int4
sexo: int4

 PL/pgSQL (PostgreSQL)

migração (EF)Aplicação
V3

Pessoa

Nome: string
Idade: int
Sexo: SexoEnum
Genero: GeneroEnum

C# (.NET Core)



Backend: exemplo COM retrocompatibilidade

Aplicação
V3

Banco de 
dados

V3

pessoa

nome: varchar
idade: int4
sexo: int4
genero: int4

 PL/pgSQL (PostgreSQL)

Pessoa

Nome: string
Idade: int
Sexo: SexoEnum
Genero: GeneroEnum

C# (.NET Core)



Backend: exemplo COM retrocompatibilidade

Aplicação
V3

Banco de 
dados

V3

compatível

Pessoa

Nome: string
Idade: int
Sexo: SexoEnum
Genero: GeneroEnum

C# (.NET Core)

pessoa

nome: varchar
idade: int4
sexo: int4
genero: int4

 PL/pgSQL (PostgreSQL)



Backend: exemplo COM retrocompatibilidade
Banco de 

dados
V3

Aplicação
V2

Pessoa

Nome: string
Idade: int
Sexo: SexoEnum

C# (.NET Core)

pessoa

nome: varchar
idade: int4
sexo: int4
genero: int4

 PL/pgSQL (PostgreSQL)

rollback



Backend: exemplo COM retrocompatibilidade
Banco de 

dados
V3

Aplicação
V2

Pessoa

Nome: string
Idade: int
Sexo: SexoEnum

C# (.NET Core)

pessoa

nome: varchar
idade: int4
sexo: int4
genero: int4

 PL/pgSQL (PostgreSQL)

compatível
+ dual-write



Matriz de compatibilidade (operações x fases)

Definições:

● Expand: adiciona estruturas novas sem remover/alterar destrutivamente o legado;
● Backfill: preenche novas propriedades/estruturas a partir de dados antigos;
● Compat (dual-write): versões antigas continuam funcionando (triggers, views, camada de app);
● Cutover: aplicação/algoritmos utilizam a propriedade/estrutura nova e para de ler as antigas;
● Contract: remove legado após a janela de tempo com métricas confirmando desuso.

Operação Expand Backfill Compat / 
dual-write

Cutover Contract / 
kill legacy

Renomear /
substituir 
coluna

✅ ✅ ✅ ✅ ✅

Alterar tipo ✅ ✅ ✅ ✅ ✅

…

Fonte: https://ricioli.bitbucket.io/docs/retrocompatilidade-db

https://ricioli.bitbucket.io/docs/retrocompatilidade-db


Frontend: conceitos de retrocompatibilidade

● Manter suporte a formatos antigos de API (ex: backend muda o formato do JSON de retorno, 
mas o frontend ainda entende o antigo);

● Controle de versão em contratos de API (ex: /v1/usuarios, /v2/usuarios no consumo);

● Flags/condicionais para ativar novas funcionalidades sem quebrar o fluxo anterior;

● Fallbacks visuais (ex: comportamento padrão quando o novo dado ainda não existe);

● Persistência local (localStorage, caches, etc.) compatível com versões antigas de dados;

● Componente tolerante a mudanças: não depender rigidamente de propriedades novas ou 
obrigatórias;

● etc.



Quality assurance/tests: conceitos de retrocompatibilidade

● Testes de regressão funcionais: validar que as funções antigas continuam operando normalmente;

● Cenários com dados antigos / legados: reutilizar payloads e registros de versões anteriores;

● Testes manuais exploratórios focados em compatibilidade: verificar impactos sutis em fluxos 
antigos;

● Verificação de compatibilidade frontend-backend (Teste Matrix): testar o novo frontend com API 
antiga e vice-versa;

● Validação de exibição e comportamento de elementos obsoletos: garantir que campos 
removidos ou alterados não causem falhas;

● etc.



Resumo

● Evite a complexidade: faça o possível para NÃO PRECISAR da 
retrocompatibilidade e/ou migrações:

○ exemplo válido:  mudar a tipagem da propriedade Valor de int para decimal;
○ exemplo inválido: mudar o nome da propriedade UserId para UsuarioId .

● Caso sua implementação/correção haja alterações no banco de dados se 
questione:

○ funciona com versões (da aplicação) antigas/anteriores?
○ funciona durante o deploy?
○ funciona após um rollback?


