
Melhorando a Experiência do 
usuário com Paralelismo e 

Cache



Sem paralelismo e cache

Cada operação espera a outra terminar, criando filas e 

travamentos.

Sem cache, dados são buscados do servidor todas as 

vezes, mantendo o tempo de resposta alto.

E pode causar sobrecarga na api (servidor).

Com paralelismo e cache

Paralelismo: Várias operações acontecem ao mesmo 

tempo, sem bloqueios.

Cache: Os dados são retornados instantaneamente, 

reduzindo requisições e acelerando o PDV. 

Aliviando o servidor de requisições desnecessárias.

Não otimizado vs Otimizado



Múltiplas Requisições

O PDV React pode "disparar" várias tarefas de rede ao mesmo tempo: buscar dados do produto e sem esperar a resposta 

de cada uma.

UI Sempre Responsiva

Graças as requisições “disparadas” por de baixo dos panos e ao "Concurrent Mode" do React 18, operações pesadas (como 

filtrar uma lista longa) podem ser pausadas para processar o input do usuário (como digitar em um campo de busca), dando 

a sensação de fluidez total.

Graças a estrutura fibers do React 18 que consegue priorizar ou bloquear renderizações específicas, e a hooks 

(useTransition, useDeferredValue) para controle de forma explicita.

O Paralelismo no PDV



Fluxo React (Assíncrono)

A UI permanece responsiva. O operador não "sente" a 

espera.

1. Lê o código de barra e busca o produto

2. Operador já pode ler o próximo item

3. Mesmo com o anterior sem resolver

4. Tudo está sendo processado em paralelo

5. Conforme são resolvidas, entram na lista

O Fluxo: Lendo vários itens em sequência

6. O item entra no cache.

7. Uma vez no cache, os itens vão vir do cache.



A Fluidez do Assíncrono

Funcionamento interno do javascript ajuda o algoritmo de 

promises do projeto.

Já que as promises se resolvem na microtask queue que tem alta

prioridade e outros callbacks do webapis ficam pra depois.

O que o faz contribuir seus 2 centavos na otimização.

Visualizando a Fluidez (Javascript)



Cache LRU (Least 
Recently Used)
Se o item já está no Cache LRU 

(ou foi pré-carregado), a busca é 

instantânea. Sem espera, sem 

travamento. Estrutura de dado 

escolhida foi doubly linked list 

com hashmap que permite 

operações eficientes, O(1) no big 

O.

Oportunidade 1: Stale 
Time (SWR)

Usar o dado do cache 

(instantâneo) e, “ao mesmo 

tempo”, buscar uma atualização 

em segundo plano 

(`stale-while-revalidate`). UX 

rápida, dados sempre frescos.

Oportunidade 2: 
Pré-Carga "Hot"

Carregar os 100 produtos mais 

vendidos no cache LRU assim que 

o PDV abre. A primeira venda de 

Coca-Cola do dia será 

instantânea.

Otimização de Cache: O Projeto Atual



Impactos do bloqueio

O Custo do Síncrono

Quando o PDV precisa processar um pagamento ou 

consultar um item, a tela inteira "congela".

Impacto na UX: O operador para. O cliente na fila fica 

impaciente. A percepção é de lentidão, mesmo que a 

operação dure apenas 2 segundos.



Conclusão: A Escolha do Negócio

 Com as otimizações o PDV ganha em experiência do usuário (UX), agilidade e 

integração, graças ao uso inteligente de concorrência (paralelismo assíncrono) e 

cache.


